An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order
Authors
Abstract:
In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples are presented to demonstrate the efficiency and accuracy of the proposed method.
similar resources
chebyshev cardinal functions: an effective tool for solving nonlinear volterra and fredholm integro-differential equations of fractional order
a computational method for numerical solution of a nonlinear volterra and fredholm integro-differentialequations of fractional order based on chebyshev cardinal functions is introduced. the chebyshev cardinaloperational matrix of fractional derivative is derived and used to transform the main equation to a system ofalgebraic equations. some examples are included to demonstrate the validity and ...
full textnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Comparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order
The work addressed in this paper is a comparative study between convergence of the acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method and Adomian decomposition method for solving differential equations of integer and fractional orders.
full textAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
full textChebyshev cardinal functions for solving volterra-fredholm integro- differential equations using operational matrices
In this paper, an effective direct method to determine the numerical solution of linear and nonlinear Fredholm and Volterra integral and integro-differential equations is proposed. The method is based on expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are des...
full textHYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
full textMy Resources
Journal title
volume 6 issue 3
pages 339- 352
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023